The Geometry of Lagrange and Hamilton Spaces
نویسنده
چکیده
This paper is an overview of the main properties of Lagrange and Hamilton spaces. Work presented as invited lecture at CAIM 2014, September 19-22, “Vasile Alecsandri” University of Bacău, Romania.
منابع مشابه
Fedosov Quantization of Lagrange–Finsler and Hamilton–Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles
We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kähler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop d...
متن کاملNonholonomic Algebroids, Finsler Geometry, and Lagrange–Hamilton Spaces
We elaborate an unified geometric approach to classical mechanics, Riemann–Finsler spaces and gravity theories on Lie algebroids provided with nonlinear connection (N–connection) structure. There are investigated the conditions when the fundamental geometric objects like the anchor, metric and linear connection, almost sympletic and related almost complex structures may be canonically defined b...
متن کاملDifferential Geometry - Dynamical Systems
1 We develop the method of anholonomic frames with associated nonlinear connection (in brief, N–connection) structure and show explicitly how geometries with local anisotropy (various type of Finsler–Lagrange–Cartan–Hamilton spaces) can be modelled on the metric–affine spaces. There are formulated the criteria when such generalized Finsler metrics are effectively defined in the Einstein, telepa...
متن کاملFinsler Connections in Generalized Lagrange Spaces
The Chern–Rund connection from Finsler geometry is settled in the generalized Lagrange spaces. For the geometry of these spaces, we refer to [5]. Mathematics Subject Classification: 53C60
متن کاملThe analysis of a Beam Made of Physical Nonlinear Material on Elastic Foundation Under a Harmonic Load
ABSTRACT: A prismatic beam made of a behaviorally nonlinear material situated on nonlinear elastic foundation is analyzed under a moving harmonic load moving with a known velocity. The vibration equation of motion is derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015